为推进联邦学习模型的研发与部署,业界开发了多种开源及商业框架工具。这些基础库为联邦学习的技术实践提供了核心支持,包括模型训练、数据安全保护、通信协议以及结果聚合等关键功能。随着可用工具的持续增加,选择适配具体应用场景的框架对实现最优模型性能具有决定性影响。